首页> 外文OA文献 >Using efficient parallelization in Graphic Processing Units to parameterize stochastic fire propagation models
【2h】

Using efficient parallelization in Graphic Processing Units to parameterize stochastic fire propagation models

机译:使用图形处理单元中的高效并行化   参数化随机火焰传播模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Fire propagation is a major concern in the world in general and inArgentinian northwestern Patagonia in particular where every year hundreds ofhectares are affected by both natural and anthropogenic forest fires. Wedeveloped an efficient cellular automata model in Graphic Processing Units(GPUs) to simulate fire propagation. The graphical advantages of GPUs wereexploded by overlapping wind direction maps, as well as vegetation, slope andaspect maps, taking into account relevant landscape characteristics for firepropagation. Stochastic propagation was performed with a probability model thatdepends on aspect, slope, wind direction and vegetation type. Implementing agenetic algorithm search strategy we show, using simulated fires, that werecover the five parameter values that characterize fire propagation. Theefficiency of the fire simulation procedure allowed us to also estimate thefire ignition point when it is unknown as well as its associated uncertainty,making this approach suitable for the analysis of fire spread based on maps ofburned areas without knowing the point of origin of the fires or how theyspread.
机译:火灾蔓延是整个世界尤其是阿根廷西北巴塔哥尼亚地区的一个主要问题,特别是每年自然和人为森林火灾都影响着数百公顷的土地。我们在图形处理单元(GPU)中开发了一种有效的细胞自动机模型来模拟火势蔓延。 GPU的图形优势通过重叠的风向图以及植被,坡度和坡度图得到了充分体现,同时考虑了用于火势传播的相关景观特征。随机传播是根据概率模型进行的,该概率模型取决于纵横比,坡度,风向和植被类型。通过模拟火灾,我们展示了实施非遗传算法搜索策略,发现了表征火灾传播的五个参数值。火灾模拟程序的效率使我们能够在未知的情况下估算着火点及其相关的不确定性,从而使该方法适用于基于燃烧区域图的火势蔓延分析,而无需知道火源或火源。他们如何传播。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号